
Design and Analysis of CXL Performance Models
for Tightly-Coupled Heterogeneous Computing

Anthony M Cabrera∗, Aaron R Young∗, Jeffrey S Vetter

ExHET’22

ORNL
April 2, 2022

∗ Both authors contributed equally to this research.



Introduction
Challenges with Heterogeneous Computing:

2 / 20

Easy to use programming models

Share data between accelerators

Leverage different compute units

Fine-grained, high-performance

How could CXL be used to addess these challenges?

Current heterogeneous system use host memory as an intermediary



Overview

CXL Overview

Analyze Existing Methods with Baseline Application

CXL Performance Model

Application Model

Discussion

3 / 20



CXL
• CXL = Compute Express Link
• Unveiled in March 2019
• Open industry standard processor interconnect
• Unified, coherent memory space between the CPU and any memory attached CXL

device.
• High-bandwidth, low-latency connection between host and devices including

accelerators, memory expansion, and smart I/O devices.
• Utilizes PCI Express 5.0 physical layer infrastructure and the PCIe alternate protocol.
• Designed to meet demanding needs of HPC work in AI, ML, communication systems

through enablement of coherency and memory semantics across heterogeneous
processing and memory systems.

4 / 20



CXL
• CXL is a non-symmetric protocol.
• The CXL transaction layer is comprised of three dynamically multiplexed sub-protocols

on a single link:
– CXL.io: Provides discovery, configuration, register access, interrupts, DMA, etc.
– CXL.cache: Provides devices access to unified memory space.
– CXL.memory: Allows devices to provide memory to the unified memory space.

Caching Devices / Accelerators

Cache

Processor

Accelerator
NIC

Cache

CXL

D
D

R
D

D
R

Cache

CXL.io CXL.ioCXL.io

Memory Buffers

Cache

Processor

Memory
Buffer

D
D

R
D

D
R

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

CXL

Accelerators with Memory

Cache

Processor

Accelerator

Cache

D
D

R
H

B
M

H
B

M
D

D
R

CXL

CXL.memCXL.memCXL.cache CXL.cache

Figure 1: CXL device classes and sub-protocols [3].

5 / 20



CXL
• CXL is a non-symmetric protocol.
• The CXL transaction layer is comprised of three dynamically multiplexed sub-protocols

on a single link:
– CXL.io: Provides discovery, configuration, register access, interrupts, DMA, etc.
– CXL.cache: Provides devices access to unified memory space.
– CXL.memory: Allows devices to provide memory to the unified memory space.

Caching Devices / Accelerators

Cache

Processor

Accelerator
NIC

Cache

CXL

D
D

R
D

D
R

Cache

CXL.io CXL.ioCXL.io

Memory Buffers

Cache

Processor

Memory
Buffer

D
D

R
D

D
R

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

CXL

Accelerators with Memory

Cache

Processor

Accelerator

Cache

D
D

R
H

B
M

H
B

M
D

D
R

CXL

CXL.memCXL.memCXL.cache CXL.cache

Figure 1: CXL device classes and sub-protocols [3].

5 / 20

For this work the focus is on 
accelerators with memory 
using host bias.



Baseline Application: DecEval
• Decompress Evaluate (DecEval) is a generic dataflow problem.
• We created DecEval as an example collaborative accelerator application.
• Application flow:

– Decompress double precision data that inflates to 1.6 GB
– Perform numerical integration to estimate π using the following formula:

N∑
i=0

4.0
1 + x2

i

∆x ≈ π

• We map the decompression step to an FPGA, and the numerical integration on the GPU

Compressed
Data

U250 Uncompressed
Values

Uncompressed
Values

Pi

6 / 20



Why This Application?
• This flavor of application highlights the benefit of extremely heterogeneous systems

– GPUs are adept at compute-intensive, floating-point computation
– FPGAs can be leveraged to exploit sequential, pipeline-able applications
– We want to leverage the strengths of different accelerators to accelerate applications with

diverse workloads
– We use this application as a case study to show how CXL can further enhance extremely

heterogeneous systems by enabling tighter integration between compute and memory
components

Baseline Implementation
• Explicit memory transfers between accelerators using the host memory.
• FPGA implemented using gzip from Xilinx Vitis Libraries (OpenCL 2.0 API).
• GPU implementation from Bristol HPC group [2] (OpenMP 4.0).

7 / 20



Test Platform

Component Model Additonal Information

CPU Intel Xeon Gold 6130
VM configured with 24 vCPUs
92 GB RAM
PCIe Passthrough

FPGA Xilinx Alveo U250

Ultrascale+ µ-arch
64 GB off-chip DDR4 RAM
PCIe Gen 3x16
Xilinx HLS Vitis Library + OpenCL Host

GPU NVidia P100

Pascal µ-arch
16 GB off-chip HBM2
PCIe Gen 3x16
CUDA through OpenMP 4.0

Table 1: Experimental System Specification
8 / 20



CXL Performance Model
• Based on high-level CXL performance expectations.
• Integrates PCIe model from Neugebauer et al. [1]
• Uses PCIe 3.0 with x16 lanes.

PCIe Transfer Time

tpcie = n

bn
+ ts

ts = 738.77 ns (extracted from [1]).

CXL Transfer Time

tcxl = n

bn · cxl_penalty
+ ts

ts = 40 ns (CXL 1.1 Technical Training Videos [3]).
cxl_penalty = 60–90% of PCIe

• bn calculated from PCIe model [1].

9 / 20



CXL Performance Model

Figure 2: Single transfer time for various data sizes.
10 / 20

Crossover at 12.7 KiB



CXL Performance Model
• Converges to cxl_penalty value.
• At 1 cache line (64B) speed up of 14.0–18.7×.

Figure 3: Relative transfer time of CXL and PCIe.
11 / 20



Baseline Compared to Model

Figure 4: Comparison of actual data transfer time for DecEval and the times predicted by the model.
12 / 20



Effect of Varied Communication Block Sizes

Figure 5: CXL Model: Total Transfer time for the entire application when transferring data in various
chunk sizes.

13 / 20



Application Flows

H2F F G G2HH2GF2HA)

Baseline Application

H2F F G G2HF2GB)

Direct Accelerator Communication

F` G`C)
CXL with Coherent Cache

D)
F

G

Pipelined CXL Application

14 / 20



Pipelined Application Model
CXL Transfer Time

tapp = d · tstage + (n − 1) · tstage + s

Figure 6: Diagram of the balanced pipeline application execution modeled by the simple application
model. In this diagram d = 3 and n = 4. 15 / 20



Application Flow Results
Pipeline limited by FPGA Kernel

FPGA decompression pipeline:

FPGA Kernel = 70.9 ms
Reads = 1.87 ms
Writes = 1.37 ms

FPGA vs GPU Kernel execution:

FPGA Kernel = 7.70 sec (21× slower than GPU Kernel)
GPU Kernel = 0.36 sec
Total = 10.58 sec

16 / 20

D)
F

G



Application Flow Results

F` G`C)
CXL with Coherent Cache

CXL Application Speedup = Ttotal

TGP U + TF P GA
= 1.31×

D)
F

G

Pipelined CXL Application

tapp = d · tstage + (n − 1) · tstage + s = 1.45×

17 / 20



CXL-Enabled Programming Model
CXL.io device registers

• Setup accelerators.
• Control execution of kernel.
• Specify data locations.

CXL.cache
• Access to unified memory

Host GPU

Unified CXL Memory

FPGA
Signal Signal

Signal

18 / 20



Conclusion
• 14.0–18.7× speed-up for small data transfers.
• CXL outperforms PCIe for transfers less than 12.7–76.5 KiB
• CXL to avoid data transfers through host memory

– 1.31× speedup with CXL Cache transfers.
– 1.45× speedup with CXL Pipeline.

• Heterogeneous programming can be easier with a unified cache-coherent memory
model.

19 / 20



Conclusion
• 14.0–18.7× speed-up for small data transfers.
• CXL outperforms PCIe for transfers less than 12.7–76.5 KiB
• CXL to avoid data transfers through host memory

– 1.31× speedup with CXL Cache transfers.
– 1.45× speedup with CXL Pipeline.

• Heterogeneous programming can be easier with a unified cache-coherent memory
model.

Questions?

19 / 20



Design and Analysis of CXL Performance Models
for Tightly-Coupled Heterogeneous Computing

Anthony M Cabrera∗, Aaron R Young∗, Jeffrey S Vetter

ExHET’22

ORNL
April 2, 2022

∗ Both authors contributed equally to this research.



CXL Asym

1 / 0



CXL Bias

2 / 0



Minimum application speedup for acceleration

t − t′ > 2d

where t is the time the task takes to run on the current device, t′ is the time the task takes to
run on a different device, and d is the time to move the data required to perform the task.

3 / 0



Bibliography I
[1] Neugebauer et al. “Understanding PCIe performance for end host networking”. In: Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication. ACM, 2018, pp. 327–341. DOI:
https://doi.org/10.1145/3230543.3230560.

[2] University of Bristol HPC Group. Programming Your GPU with OpenMP.
https://github.com/UoB-HPC/openmp-tutorial. 2020.

[3] Compute Express Link Consortium. CXL 1.1 Technical Training Videos. Aug. 16, 2021. URL:
https://www.computeexpresslink.org/cxl-regulated-videos.

4 / 0

https://doi.org/https://doi.org/10.1145/3230543.3230560
https://github.com/UoB-HPC/openmp-tutorial
https://www.computeexpresslink.org/cxl-regulated-videos

	CXL Overview
	Analyze Existing Methods with Baseline Application
	CXL Performance Model
	Application Model
	Discussion
	Appendix

